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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique used
for visualization of the brain activity. One particular application of fMRI is the
study of the resting-state functional connectivity, whose focus is to study the
spontaneous brain activity in resting condition. Information extracted from the
resting-state functional connectivity might be used for further understanding of
the brain, and to help in the diagnosis of mental diseases such as Schizophrenia,
or Attention Deficit and Hyperactivity Disorder. In this work, we evaluate the
application of Gaussian Markov Random Fields to build functional connectivity
models that can be used as classifiers using resting-state fMRI data. These models
present at least three advantages: 1) There is a natural mapping from brain data to
the graphical model. 2) There are efficient algorithms to train the model. 3) It is
possible to directly evaluate model fit of the data. We test our methodology in two
binary problems: gender classification (male vs. female) and age group classifi-
cation (people younger than 10 vs people of at least 17 years old). For the gender
classification problem we achieved an accuracy of 59.46%, while for the age clas-
sification problem the accuracy was 79.60%. In both problems we presented a
statistically significant improvement over a class-majority classifier.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique used for visualization
of the brain activity. The rationale behind fMRI is that active neurons consume oxygen at a higher
rate than inactive ones, phenomenon known as blood oxygen level dependent (BOLD) signal: an in-
crease in neuronal activity raises the oxygen consumption due to the higher metabolic requirements;
this, in turn, changes the concentrations of oxyhemoglobin and deoxyhemoglobin in the blood. Be-
cause these two substances have different magnetic properties, they can be identified using a Mag-
netic Resonance scan. The changes in the concentrations of oxyhemoglobin and deoxyhemoglobin
along time are reflected as changes in intensity of the images [1].

Resting state functional connectivity is an fMRI technique that studies the spontaneous brain activ-
ity during resting conditions. This approach enables the analysis of the brain regions that present
synchrony in their neural activity even if their are not physically connected. By studying the resting
state networks, it is possible to broaden the understanding of how multiple regions interact with
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each other. This is important for at least two reasons: 1) The spontaneous activity consume more
than 80% of the brain energy. 2) Resting-state studies do not rely on active participation of patients,
which allow them to be used with uncooperative populations or in scenarios when it is difficult to
maintain the attention of the patient [2].

There are two main approaches for analyzing resting-fMRI data from a group of people: model-
driven approaches, and data-driven approaches [3]. In the first one, a group of regions of interest is
selected a priory, and the analysis is limited to those regions. Data-driven approaches, like Indepen-
dent Component Analysis (ICA), are exploratory and hypothesis-free, which allow them to generate
results at a network level, and not only at inter-regional level [2].

Among the model-driven approaches, the use of probabilistic graphical models (PGM) is a natural
way of finding the connectivity among the different regions of interest. PGM encode a complex dis-
tribution over high-dimensional spaces in the form of a graph [4]. These models are easily visualized
and provide an inference tool that captures statistical independences among the different random
variables [5]. Every region of interest in the brain might be represented as a node in the PGM, while
the functional connectivity might be represented by the edges among the nodes. By using PGM,
it is possible to create connectivity models for different populations and then use these model for
classification purposes, or for finding statistically significant differences among them [6, 7].

In this paper we focus on the application of PGM, specifically Gaussian Markov Random Fields, for
classification in two binary problems: gender (male vs. female), and age-group (younger than 9 vs.
older than 17) using information extracted from resting-state fMRI scans of the publicly available
dataset ADHD-200 [8].

The rest of the paper is organized as follows: Section 2 gives a summary of the work that has
been developed in the analysis of resting-state fMRI and in the use of classifiers based on fMRI
data. Section 3 describes the theory behind our approach, the dataset used for the experiments,
and the methodology used for the experimentation. Section 4 shows the results achieved with the
experiments. In Section 5 we analyze the results given by the experiments. Finally, Section 6 states
our conclusions and future work.

2 Previous work

The objective of brain functional connectivity is to find statistical dependencies between neural
activity in different parts of the brain [9, 10]. To find them, model driven approaches are commonly
used. These methods require the definition of regions of interest to be analyzed. Then, the functional
connectivity can be established using correlation, or partial correlation methods [3, 6].

Although correlation based analysis of fMRI data is a common technique, it lacks the ability of
distinguishing between direct and indirect dependencies among the nodes. Since it works only
with two nodes at the time, it cannot identify when two or more nodes are acting together [11].
Despite this limitation, it has successfully been used in the past for distinguishing between healthy
controls from people with schizophrenia (93% accuracy) [12], or classifying males and females
(71% accuracy) [13]; however, it requires the use of an independent classifier, like support vector
machines, which diminishes the interpretability of the models.

These problems can be solved by Gaussian Markov Random Fields, which use partial correlation
to find the connectivity among the nodes. In other words, they find the conditional independences
between two random variables given the rest of the variables [4], solving the problem of several
nodes acting together. At the same time, unlike correlation-based methods, we can easily estimate
model fit by computing the likelihood of the data [6], avoiding the need of an independent classifier.

On the other side, they make strong assumptions about the distribution of the data: 1) That the sam-
ples are independent and identically distributed, 2) That the data follows a Gaussian distribution.
Smith et al. [14] made an empirical study using simulated data where they found that, despite these
strong assumptions, this method reliably identifies direct relationships between brain regions. An-
other drawback is that finding an optimal sparse model is an NP-hard problem [6]. Many research ef-
forts have been focused on estimating the partial correlation and the corresponding graphical model,
and very efficient solutions have been proposed [15, 16, 17]. These random fields were successfully
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used by Narayan et al. [7] for finding statically significant differences in the brain connectivity in
healthy controls and people with synesthesia; however, they did not perform any classification task.

A different problem in the construction of functional brain connectivity models is the definition of
the regions of interest, since the use of inaccurate regions extremely damages the network estima-
tion [14]. Power et al. [18] identified 264 regions of interest that represent functional ”units of brain
organization”. In their work, they argue that other common approaches to define nodes for functional
connectivity analysis, like parcels from anatomically based brain atlases, or the definition of nodes
as voxels do not correspond to functional units of the brain, and their use might lead to inaccurate
connectivity models.

Satterthwaite et al. [13] used the regions defined by Power et al. [18] and made an empirical study
were they found that gender differences in cognitive profiles are related to multivariate patterns of
resting-state functional connectivity MRI (rsfc-MRI). Specifically, they found that males display
more between-module connectivity, while females demonstrated more within-module connectivity.
They constructed a graph using a correlation based method and used SVM to classify between both
genders. They achieved an accuracy of (71%; P <0.001) using data from a sample of 674 persons
obtained in a single site.

One question that might arise is how well results obtained in data obtained from a single site gen-
eralize to multisite data. Nielsen et al. [19], for example, obtained 60% accuracy for identifying
healthy controls and people with autism when using multisite data, while the reported accuracy in
data from a single site was 80%. In our work, we will perform a similar study to the one made by
Satterthwaite et al.[13], but using data from 8 different sites, extending the problem to age group
classification, and implementing Gaussian Markov Random Fields as a classifier.

3 Methods and experiments

3.1 Gaussian Markov Random Fields

A Gaussian Markov Random Field (GMRF) is similar to Markov Random Fields, with the difference
that now the random variables take continuous values [4]. A multivariate Gaussian distribution over
the random variables X1, X2, . . . , Xn is parametrized by an n dimensional mean vector µ and a
symmetric n x n covariance matrix Σ. The density function is then defined as:

p(x) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(x− µ)T Σ−1(x− µ)

]
Any Gaussian distribution can be represented as a pairwise Markov Network with quadratic node
and edge potentials. These kind of networks are known as Gaussian Markov Random Fields [4]. One
advantage of these models is that two Gaussian variables, Xi and Xj are conditionally independent
given the rest of the variables if and only if their corresponding entries Σ−1

i,j = Σ−1
j,i = 0 [20].

Therefore, learning the structure of a GMRF reduces to the problem of finding zero entries on the
inverse of the covariance matrix Σ−1, which is also known as the precision matrix Ω = Σ−1.
Figure 1 exemplifies this behavior.

Figure 1: The zeros in the precision matrix Ω = Σ−1 represent conditional independences on the
graphical model.

A common approach when finding probabilistic graphical models is to chose the simplest one that
adequately explains the data [5]. One metric that can be used for evaluating the model fit is the
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likelihood function, which measures the probability of the data given the model. Since a fully
connected model will output the highest likelihood function, a regularization term for penalizing
complex models is required.

For a dataset D with n independent and identically distributed samples x1,x2, . . . ,xn, where each
variable in xi follows a Gaussian distribution with zero mean, its log-likelihood function can be
expressed as:

L(D) =
n

2
[log(|Ω|)− tr(AΩ)] + const

A =
1

n

n∑
i=1

xix
T
i

(1)

Since the constant term is independent of the mean and covariance, it can be ignored in the opti-
mization function. The objective is then to find the model that maximizes the penalized likelihood
function with a restriction in the number of parameters, which is known as the spase inverse covari-
ance selection problem:

max
Ω

log(|Ω|)− tr(XTXΩ)− λ||Ω||1 (2)

where X is the a matrix of n x m, n is the number of samples in the dataset, m is the number of
random variables, λ is the regularization term, and ||Ω||1 is the l1 norm of the precision matrix.

An efficient algorithm for solving this optimization problem is graphical lasso, which uses a coordi-
nate descent procedure for the lasso. One of the advantages of graphical lasso is its computational
speed: it is 30 to 4,000 times faster than competing methods [16]We used the freely available
graphical lasso package for our experiments [21].

3.2 Dataset

ADHD-200 [8] is a dataset collected with the objective of studying Attention Deficit and Hyper-
activity Disorder (ADHD). It contains 973 resting-state fMRI scans collected across 8 independent
imaging sites. The age range of the entire sample is 7-21 years. The ADHD-200 dataset was pre-
processed for Brown et al. [22], and we used these preprocessed data for our experiments.

Out of the 973 scans, we used only the ones corresponding to healthy subjects (301 males, 259
females) for the gender classification problem. For the age group problem, we used the scans of the
45 males and 59 females younger than 10 years old, and 24 males and 34 females of at least 17 years
old.

Every fMRI scan is represented as a 4-dimensional matrix of 79x95x68x91. The first three dimen-
sions represent the 3D representation of the brain, while the 4th dimension is the time steps. In other
words, we represent every brain with 510,340 voxels and there is a time series of 91 points for every
voxel.

3.3 Experiment design

Our methodology involves the 7 steps depicted in Figure 2. In general terms, it consists in creating
a graphical model for every class that we are interested in classifying. Then, for every subject to be
classified, we will compute the likelihood of the data given a particular model. The subject will be
classified with the class whose model has the highest likelihood.

1. Extract regions of interest. Instead of working with the more than 500,000 voxels, which
might become an intractable problem from the computational perspective, we used the 264
regions of interest defined by Power et al. [18]. Each region of interest is defined as a
sphere of 5 mm radius, so we computed the average of the time signals of the voxels inside
this sphere. The result of this process is 264 time series per subject. Since every time series
consists in 91 time points, every subject is represented by a matrix of 91 x 264.
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Figure 2: The 7 steps of our methodology for classifying the resting-state fMRI scans.

2. Normalize data. We normalized the data of every subject and region of interest indepen-
dently. Every time series was normalized to mean µ = 0 and standard deviation σ = 1.

3. Separate data by class. Separate the dataset in groups of interest. For this particular case
the classes are male or female for the gender classification task, and younger than 10 years
old or at least 17 years old for the age group classification task.

4. Create training and test set. Randomly select 70% of the data available in each class for
training; the remaining 30% will be used for testing purposes and will not be used for taking
any decision in the selection of the model.

5. Concatenate time series. Steps 5 and 6 are implemented using 5-fold cross validation and
the training set from the last step. Using the 4 subsets of each round, concatenate the time
series corresponding to the same region of interest. This will result in a matrix X of N ∗91
x 264 per class, where N is the number of subjects present in the 4 subsets.

6. Construct the model. Using Eq. 2, construct a model for each class. Then, test the per-
formance of the model on the remaining subset of data (of the cross validation process).
Performance was measured as the percentage of samples correctly classified on the subset
not used for training. To perform classification we simply compute the likelihood of the
data given each model using Eq. 1, and assign the subject the class whose model gave the
highest likelihood. Since the constant term is independent of the model, it can be ignored
for the classification step. We experimented with the following values for the regularization
term: λ = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3], and selected the value of λ with the highest
cross-validation accuracy.

7. Classify new data. After selecting the best model for each class (steps 5 and 6), test the
performance of the model on the test set created on step 4. Report the accuracy on this test
set.

4 Results

Since the step 4 in our methodology involves the creation of random training and test sets, different
runs of the experiment will output a different accuracy. In order to obtain a better estimate of
the performance of the methodology, we repeated the experiment 30 times. Table 1 shows the
statistics for the gender classification problem, while Table 2 shows the results for the age group
problem. Each table presents the value of the average accuracy over the 30 runs of the training
set (the one created on step 5 of the methodology using 4 subsets), the cross-validation set (the
remaining subset of step 5, used to select the best model), and the test step (the one created on step
4 of the methodology). Additionally, we report the accuracy of a class-majority model that would
classify all the subjects with the class with the highest number of samples.

In both experiments, the difference between the mean accuracy in the test set obtained with our
methodology and the class-majority model is statistically significant (p < .001) using a one-sample
t-test. The 95% confidence interval for the mean accuracy in the test set of the gender classification
problem is: 57.59% - 61.33%, giving an improvement of at least 4% when compared with the class-
majority model. For the case of the age group classification problem, the 95% confidence interval
for the mean on the test set is: 77.41% - 81.77%, giving an improvement of at least 13.21%.

We also made a third experiment in which we solved 4 binary problems. We separated the data
in 4 different groups: females younger than 10, males younger than 10, females of at least 17 and
males of at least 17 years old. We then compared the classification accuracy among the possible
combinations of these 4 groups. The results are shown on Table 3.
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Table 1: Classification results for the male vs. female problem: mean, standard deviation (std),
minimum value, and maximum value of the accuracy over the 30 runs, λ = 0.1

Mean Std Min Max

Train 89.61% 4.38% 77.34% 96.26%
CV 60.41% 2.32% 56.48% 66.73%
Test 59.46% 4.93% 49.11% 70.54%

Class-majority 53.57% - - -

Table 2: Classification results for age group problem: mean, standard deviation (std), minimum
value, and maximum value of the accuracy over the 30 runs, λ = 0.01

Mean Std Min Max

Train 97.37% 0.96% 95.16% 99.42%
CV 81.28% 1.86% 78.29% 85.90%
Test 79.60% 5.75% 69.7% 96.97%

Class-majority 64.20% - - -

Table 3: Average classification accuracy in the age group problem over 30 runs. In parenthesis we
report the class-majority model accuracy.

Male < 9 Male > 17 Female < 9 Female > 17

Male < 9 - 77.86% (65.22%) 52.54% (56.73%) 73.81% (56.96%)
Male > 17 77.86% (65.22%) - 81.76% (71.08%) 58.89% (58.62%)
Female < 9 52.54% (56.73%) 81.76% (71.08%) - 83.33% (63.44%)
Female > 17 73.81% (56.96%) 58.89% (58.62%) 83.33% (63.44%) -

The precision matrix, Ω, of every model represents the conditional independences of the graphi-
cal model. In every model, each of the 264 regions of interest is represented by node, while the
functional connectivity is represented by the edges between the nodes. For the gender classification
problem, the models with highest prediction accuracy generated 22,968 connections for the female
brain and 22,738 connections for the male brain. Analogously, the best models for the age classi-
fication problem found 29,862 connections for the brain of people younger than 10 years old, and
25,942 connections for the brain of people of at least 17 years old. Figure 3 shows the model found
in the gender classification problem, while Figure 4 shows the analogous model for the age group
classification problem.

5 Discussion

In both problems, gender classification and age group classification, the Gaussian Markov Random
Field classifier performed statistically significant better than a simple model that would label all
the subjects with the mode of the classes. Despite this difference, it is not difficult to see that the
improvement on the gender classification problem is practically imperceptible: slightly less than 6%.
One important aspect to note is that even when the test accuracy is low, the training accuracy is high:
89.61%, so the model is clearly overfitting. We tried to increase the weight of the regularization term;
however, the training accuracy dropped without an increment in the test accuracy.

One natural way to try to improve the performance is to subdivide the total sample in age groups,
since it might be possible that a model for each gender cannot appropriately capture the differences
present among different age groups; however, the results shown in Table 3 showed that it was not the
case. Using the current approach we were unable of correctly classifying males and females within
the same age group. The analysis of the male and female models created might bring some intuition
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Figure 3: Left: Thresholded connectivity model for females. Right: Thresholded connectivity model
for males.

Figure 4: Left: Thresholded connectivity model for people younger than 10 years old. Right:
Thresholded connectivity model of at least 17 years old.

about why that happened: both models had basically the same number of connections (22,968 for
females and 22,738 for males). At the same time, by analyzing the Figure 3 we can appreciate that
many of the most important connections are present in both models, including the strongest one!

On the other side, Figure 4 shows important differences between the brain model for people younger
than 10 years old, and the one for people of at least 17 years old. The number of connections above
the selected threshold is significantly higher in the model of older people. At the same time, the
difference between the total number of connections in both models was of almost 4,000 (compared
to only 230 in the gender problem). Here is important to note that even when the brain model for
younger people had more number of connections, the model for older people had more number
of ”strong” connections. This difference in the models is reflected in the classification accuracy,
where we could correctly classify 79.60% of the subjects, a difference of 15.20% when compared
to a class-majority model. This improvement was kept when we subdivided the age groups by
gender, as can be appreciated on Table 3. It would be interesting to analyze, from the perspective of
neuroscience, if these differences in the number of connections might have a physiological basis or
are only relevant features found by the graphical model and cannot be directly interpreted.

Another important thing to remark is the computational efficiency of graphical LASSO [21], algo-
rithm that was used for finding the different brain models. This algorithm could find a model for
two classes in less than 400 seconds when run in a processor Intel Core i3 at 2.13 Ghz x 4. This
efficiency allowed the execution of the 30 different runs that we used to obtain statistics about the
performance and compute the statistical significance analysis.

6 Conclusions and future work

In this work we implemented Gaussian Markov Random Fields to solve two bi-class problems:
gender (male vs. female) and age group (more than 10 years old vs. at least 17 years old). We used
graphical LASSO to train the random field. This approach had at least three advantages: 1) It was
computationally efficient. 2) It enforced sparsity, which diminished the complexity of the model and
facilitated visualization. 3) It was possible to assess model fit in a natural and simple way.

The proposed methodology had a good performance in the age group problem; however, it could
not find a good classifier for the male vs. female problem. The current approach makes some strong
assumptions that could be relaxed in an effort to improve the performance of the classifiers. In first
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place, we are assuming that the time signals of the regions of interest, across all the subjects, follow
a gaussian distribution. A more profound analysis of these signals is needed in order to evaluate if
a mixture of gaussians could be a better design approach. On the other side, we are assuming that
every time point in the signal is independent of the other ones. A different approach could be to
extract a different set of features from every signal using signal processing technique and evaluate if
the results improve.

Finally, for the age group problem we used only two different groups. As a future work we will also
identify how many different age groups are present in this particular dataset, and then implement the
methodology in different dataset to evaluate the generalization capabilities.
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